Abstract

The substituent effect in 1‐, 2‐, and 9‐anthrols is studied by means of B3LYP/6‐311++G(d,p) computation, taking into account substituents (X): NO2, CN, OH and NH2 located in all positions except the adjacent ones. The substituent effect is characterized by approaches based on quantum chemistry: The charge of the substituent active region (cSAR), substituent effect stabilization energy (SESE) and the charge flow index (CFI) describing flow of the charge from X to the fixed group (or vice versa) as well as substituent constants σ. Changes in properties observed in the fixed group (OH) are described by cSAR(OH). Mutual interdependences are found between these descriptors. The HOMA index is used to describe an effect of a substituent on aromaticity of an anthrol hydrocarbon skeleton and of individual rings. In all cases, the classical (influence of X on the properties of OH) and reverse (influence of OH on the properties of X) substituent effects are studied. The latter is clearly documented by the cSAR approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.