Abstract
Time crystal is defined as a phase of matter spontaneously exhibiting a periodicity in time. Previous studies focused on discrete quantum time crystals under periodic drive. Here, we propose a time crystal model based on a levitated charged nanoparticle in a static magnetic field without drive. Both the classical time crystal in thermal equilibrium and the quantum time crystal in the ground state can emerge in the spin rotational mode, under the strong magnetic field or the large charge-to-mass ratio limit. Besides, for the first time, the \emph{time polycrystal} is defined and naturally appears in this model. Our model paves a way for realizing time crystals in thermal equilibrium.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.