Abstract

We observe that a wide class of higher-derivative systems admits a bounded integral of motion that ensures the classical stability of dynamics, while the canonical energy is unbounded. We use the concept of a Lagrange anchor to demonstrate that the bounded integral of motion is connected with the time-translation invariance. A procedure is suggested for switching on interactions in free higher-derivative systems without breaking their stability. We also demonstrate the quantization technique that keeps the higher-derivative dynamics stable at quantum level. The general construction is illustrated by the examples of the Pais-Uhlenbeck oscillator, higher-derivative scalar field model, and the Podolsky electrodynamics. For all these models, the positive integrals of motion are explicitly constructed and the interactions are included such that keep the system stable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.