Abstract

We have studied classical and quantum solutions of (2+1)-dimensional Einstein gravity theory. Quantum theory is defined through the local conserved angular momentum and mass operators in the case of spherically symmetric spacetime. The de Broglie–Bohm interpretation is applied to the wavefunction and we derive the differential equations for the metric. By solving these equations, we obtain the quantum effect for the metric and compare them with the classical metric. In particular, the quantum effect on the metric for the closed de Sitter universe is estimated quantitatively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.