Abstract
We construct the soliton solutions in the symmetric space sine-Gordon theories. The latter are a series of integrable field theories in 1+1-dimensions which are associated to a symmetric space F/G, and are related via the Pohlmeyer reduction to theories of strings moving on symmetric spaces. We show that the solitons are kinks that carry an internal moduli space that can be identified with a particular co-adjoint orbit of the unbroken subgroup H of G. Classically the solitons come in a continuous spectrum which encompasses the perturbative fluctuations of the theory as the kink charge becomes small. We show that the solitons can be quantized by allowing the collective coordinates to be time-dependent to yield a form of quantum mechanics on the co-adjoint orbit. The quantum states correspond to symmetric tensor representations of the symmetry group H and have the interpretation of a fuzzy geometric version of the co-adjoint orbit. The quantized finite tower of soliton states includes the perturbative modes at the base.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.