Abstract

Plasmonics — the interaction of light with free electrons in metals — is commonly understood within classical electrodynamics using local-response constitutive laws (such as Ohm's law). However, the tight localization of plasmons to small volumes is revealing intriguing new physics such as nonclassical electrodynamics with a nonlocal response of the plasmons. Nonlocal effects are being explored both theoretically and experimentally in different charge-conducting material systems with examples ranging from sub-10 nanometer noble metal particles to one-atom thin disks of doped graphene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.