Abstract

Laser beams with a near uniform intensity profile, such as flat-top and super-Gaussian beams, have found many applications, particularly in laser materials processing. Unfortunately such beams are not eigenmodes of free-space and, thus, alter their intensity profile during propagation. This may be overcome by creating vector flat-top beams. Here, we exploit the polarization dependent efficiency of spatial light modulators to create a vector flat-top beam that maintains its intensity profile and vector nature during propagation. We apply a holistic classical and quantum toolkit to analyze the dynamics of the vector state during propagation and demonstrate the versatility of these beams in an optical trapping and tweezing application. Our simple generation approach and holistic analysis toolbox will appeal to an audience who wish to employ these beams in a variety of applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.