Abstract
From the ordinary tensile string we derive a geometric action for the tensionless ( T=0) string and discuss its symmetries and field equations. The Weyl symmetry of the usual string is shown to be replaced by a global space-time conformal symmetry in the T→0 limit. We present the explicit expressions for the generators of this group in the light-cone gauge. Using these, we quantize the theory in an operator form and require the conformal symmetry to remain a symmetry of the quantum theory. Modulo details concerning zero-modes that are discussed in the paper, this leads to the stringent restriction that the physical states should be singlets under space-time diffeomorphisms, hinting at a topological theory. We present the details of the calculation that leads to this conclusion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.