Abstract

We review harmonic oscillator theory for closed, stable quantum systems. The H2 potential energy curve (PEC) of Mexican hat-type, calculated with a confined Kratzer oscillator, is better than the Rydberg–Klein–Rees (RKR) H2 PEC. Compared with QM, the theory of chemical bonding is simplified, since a confined Kratzer oscillator can also lead to the long sought for universal function, once called the Holy Grail of Molecular Spectroscopy. This is validated by reducing PECs for different bonds H2, HF, I2, N2 and O2 to a single one. The equal probability for H2, originating either from [Formula: see text] or [Formula: see text], is quantified with a Gauss probability density function. At the Bohr scale, a confined harmonic oscillator behaves properly at the extremes of bound two-nucleon quantum systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.