Abstract

A coordinate-free reduction procedure is developed for linear time-dependent differential-algebraic equations that transforms their solutions into solutions of smaller systems of ordinary differential equations. The procedure applies to classical as well as distribution solutions. In the case of analytic coefficients the hypotheses required for the reduction not only are necessary for the validity of the existence and uniqueness results, but even allow for the presence of singularities. Straightforward extensions including undetermined systems and systems with nonanalytic coefficients are also discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.