Abstract

BackgroundRandom-effects (RE) models are commonly applied to account for heterogeneity in effect sizes in gene expression meta-analysis. The degree of heterogeneity may differ due to inconsistencies in sample quality. High heterogeneity can arise in meta-analyses containing poor quality samples. We applied sample-quality weights to adjust the study heterogeneity in the DerSimonian and Laird (DSL) and two-step DSL (DSLR2) RE models and the Bayesian random-effects (BRE) models with unweighted and weighted data, Gibbs and Metropolis-Hasting (MH) sampling algorithms, weighted common effect, and weighted between-study variance. We evaluated the performance of the models through simulations and illustrated application of the methods using Alzheimer’s gene expression datasets.ResultsSample quality adjusting within study variance (wP6) models provided an appropriate reduction of differentially expressed (DE) genes compared to other weighted functions in classical RE models. The BRE model with a uniform(0,1) prior was appropriate for detecting DE genes as compared to the models with other prior distributions. The precision of DE gene detection in the heterogeneous data was increased with the DSLR2wP6 weighted model compared to the DSLwP6 weighted model. Among the BRE weighted models, the wP6weighted- and unweighted-data models and both Gibbs- and MH-based models performed similarly. The wP6 weighted common-effect model performed similarly to the unweighted model in the homogeneous data, but performed worse in the heterogeneous data. The wP6weighted data were appropriate for detecting DE genes with high precision, while the wP6weighted between-study variance models were appropriate for detecting DE genes with high overall accuracy. Without the weight, when the number of genes in microarray increased, the DSLR2 performed stably, while the overall accuracy of the BRE model was reduced. When applying the weighted models in the Alzheimer’s gene expression data, the number of DE genes decreased in all metadata sets with the DSLR2wP6weighted and the wP6weighted between study variance models. Four hundred and forty-six DE genes identified by the wP6weighted between study variance model could be potentially down-regulated genes that may contribute to good classification of Alzheimer’s samples.ConclusionsThe application of sample quality weights can increase precision and accuracy of the classical RE and BRE models; however, the performance of the models varied depending on data features, levels of sample quality, and adjustment of parameter estimates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.