Abstract
This chapter explores the basic concepts that arise when real numbers and continuous functions are studied, particularly the limit concept and its use in proving properties of continuous functions. It gives proofs of the Bolzano–Weierstrass and Heine–Borel theorems, and the intermediate and extreme value theorems for continuous functions. Also, the chapter uses the Heine–Borel theorem to prove uniform continuity of continuous functions on closed intervals, and its consequence that any continuous function is Riemann integrable on closed intervals. In several of these proofs there is a construction by “infinite bisection,” which can be recast as an argument about binary trees. Here, the chapter uses the role of trees to construct an object—the so-called Cantor set.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.