Abstract
DEVS is a popular formalism for modelling complex dynamic systems using a discrete-event abstraction. At this abstraction level, a timed sequence of pertinent "events" input to a system (or internal, in the case of timeouts) cause instantaneous changes to the state of the system. Main advantages of DEVS are its rigorous formal definition, and its support for modular composition. This tutorial introduces the Classic DEVS formalism in a bottom-up fashion, using a simple traffic light example. The syntax and operational semantics of Atomic (i.e., non-hierarchical) models are introduced first. Coupled (i.e., hierarchical) models are introduced to structure and couple Atomic models. We continue to actual applications of DEVS, for example in performance analysis of queueing systems. All examples are presented with the tool PythonPDEVS, though this introduction is equally applicable to other DEVS tools. We conclude with further reading on DEVS theory, DEVS variants, and DEVS tools.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.