Abstract

We prove the validity of regularizing properties of the boundary integral operator corresponding to the double layer potential associated to the fundamental solution of a nonhomogeneous second order elliptic differential operator with constant coefficients in Hölder spaces by exploiting an estimate on the maximal function of the tangential gradient with respect to the first variable of the kernel of the double layer potential and by exploiting specific imbedding and multiplication properties in certain classes of kernels of integral operators and a generalization of a result for integral operators on differentiable manifolds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.