Abstract

The paper combines simple general methodologies to obtain new classes of matrix-valued covariance functions that have two important properties: (i) the domains of the compact support of the several components of the matrix-valued functions can vary between components; and (ii) the overall differentiability at the origin can also vary. These models exploit a class of functions called here the Wendland–Gneiting class; their use is illustrated via both a simulation study and an application to a North American bivariate dataset of precipitation and temperature. Because for this dataset, as for others, the empirical covariances exhibit a hole effect, the turning bands operator is extended to matrix-valued covariance functions so as to obtain matrix-valued covariance models with negative covariances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.