Abstract

Caching dynamic pages at a server site is beneficial in reducing server resource demands and it also helps dynamic page caching at proxy sites. Previous work has used fine-grain dependence graphs among individual dynamic pages and underlying data sets to enforce result consistency. This paper proposes a complementary solution for applications that require coarse-grain cache management. The key idea is to partition dynamic pages into classes based on URL patterns so that an application can specify page identification and data dependence, and invoke invalidation for a class of dynamic pages. To make this scheme time-efficient with small space requirement, lazy invalidation is used to minimize slow disk accesses when IDs of dynamic pages are stored in memory with a digest format. Selective precomputing is further proposed to refresh stale pages and smoothen load peaks. A data structure is developed for efficient URL class searching during lazy or eager invalidation. This paper also presents design and implementation of a caching system called Cachuma which integrates the above techniques, runs in tandem with standard Web servers, and allows Web sites to add dynamic page caching capability with minimal changes. The experimental results show that the proposed techniques are effective in supporting coarse-grain cache management and reducing server response times for tested applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call