Abstract
A majority decoding algorithm for a class of real-number codes is presented. Majority decoding has been a relatively simple and fast decoding technique for codes over finite fields. When applied to decode real-number codes, the robustness of the majority decoding to the presence of background noise, which is usually an annoying problem for existing decoding algorithms for real-number codes, is its most prominent property. The presented class of real-number codes has generator matrices similar to those of the binary Reed-Muller codes and is decoded by similar majority logic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.