Abstract
AbstractHere, we initiate a program to study relationships between finite groups and arithmetic–geometric invariants in a systematic way. To do this, we first introduce a notion of optimal module for a finite group in the setting of holomorphic mock Jacobi forms. Then, we classify optimal modules for the cyclic groups of prime order, in the special case of weight 2 and index 1, where class numbers of imaginary quadratic fields play an important role. Finally, we exhibit a connection between the classification we establish and the arithmetic geometry of imaginary quadratic twists of modular curves of prime level.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.