Abstract
Imbalance between positive and negative outcomes, a so-called class imbalance, is a problem generally found in medical data. Imbalanced data hinder the performance of conventional classification methods which aim to improve the overall accuracy of the model without accounting for uneven distribution of the classes. To rectify this, the data can be resampled by oversampling the positive (minority) class until the classes are approximately equally represented. After that, a prediction model such as gradient boosting algorithm can be fitted with greater confidence. This classification method allows for non-linear relationships and deep interactive effects while focusing on difficult areas by iterative shifting towards problematic observations. In this study, we demonstrate application of these methods to medical data and develop a practical framework for evaluation of features contributing into the probability of stroke.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.