Abstract
Just-in-Time Software Defect Prediction (JIT-SDP) is an SDP approach that makes defect predictions at the software change level. Most existing JIT-SDP work assumes that the characteristics of the problem remain the same over time. However, JIT-SDP may suffer from class imbalance evolution. Specifically, the imbalance status of the problem (i.e., how much underrepresented the defect-inducing changes are) may be intensified or reduced over time. If occurring, this could render existing JIT-SDP approaches unsuitable, including those that re-build classifiers over time using only recent data. This work thus provides the first investigation of whether class imbalance evolution poses a threat to JIT-SDP. This investigation is performed in a realistic scenario by taking into account verification latency -- the often overlooked fact that labeled training examples arrive with a delay. Based on 10 GitHub projects, we show that JIT-SDP suffers from class imbalance evolution, significantly hindering the predictive performance of existing JIT-SDP approaches. Compared to state-of-the-art class imbalance evolution learning approaches, the predictive performance of JIT-SDP approaches was up to 97.2% lower in terms of g-mean. Hence, it is essential to tackle class imbalance evolution in JIT-SDP. We then propose a novel class imbalance evolution approach for the specific context of JIT-SDP. While maintaining top ranked g-means, this approach managed to produce up to 63.59% more balanced recalls on the defect-inducing and clean classes than state-of-the-art class imbalance evolution approaches. We thus recommend it to avoid overemphasizing one class over the other in JIT-SDP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.