Abstract

Poly(ethylene terephthalate) hydrolase (PETase) from Ideonella sakaiensis 201-F6 was expressed and purified from Escherichia coli to hydrolyze poly(ethylene terephthalate) (PET) fibers waste for its monomers recycling. Hydrolysis carried out at pH 8 and 30 °C was found to be the optimal condition based on measured monomer mono(2-hydroxyethyl) terephthalate (MHET) and terephthalic acid (TPA) concentrations after 24 h reaction. The intermediate product bis(2-hydroxyethyl) terephthalate (BHET) was a good substrate for PETase because BHET released from PET hydrolysis was efficiently converted into MHET. Only a trace amount of MHET could be further hydrolyzed to TPA. Class I hydrophobins RolA from Aspergillus oryzae and HGFI from Grifola frondosa were expressed and purified from E. coli to pretreat PET surface for accelerating PETase hydrolysis against PET. The weight loss of hydrolyzed PET increased from approximately 18% to 34% after hydrophobins pretreatment. The releases of TPA and MHET from HGFI-pretreated PET were enhanced 48% and 62%, respectively. The selectivity (TPA/MHET ratio) of the hydrolysis reaction was approximately 0.5.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call