Abstract

Defective herpes simplex virus type 1 genomes are composed of head-to-tail tandem repeats of small regions of the nondefective genome. Monomeric repeat units of class I defective herpes simplex virus genomes were cloned into bacterial plasmids. The repeat units functioned as replicons since both viral and convalently linked bacterial plasmid DNA replicated (with the help of DNA from nondefective virus) when transfected into rabbit skin cells. Recombinant plasmids were packaged into virions and were propagated from culture to culture by infection with progeny virus. Replication was evidently by a rolling circle mechanism since plasmid DNA was present in a high-molecular-weight form in transfected cells. Circular recombinant plasmid DNA replicated with a high degree of fidelity. In contrast, linear plasmid DNA underwent extensive deletions of both viral and bacterial sequences when transfected into rabbit skin cells. Derivative plasmids, a fraction of the size of the parental plasmid, were rescued by transforming Escherichia coli with DNA from the transfected rabbit skin cells. These plasmids functioned as shuttle vectors since they replicated faithfully in both eucaryotic and procaryotic cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call