Abstract
We prove that the divisor class group of any open Richardson variety in the Grassmannian is trivial. Our proof uses Nagata’s criterion, localizing the coordinate ring at a suitable set of Plücker coordinates. We prove that these Plücker coordinates are prime elements by showing that the subscheme they define is an open subscheme of a positroid variety. Our results hold over any field and over the integers.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.