Abstract

Class EF inverters are hybrid inverters that combine the improved switch voltage and current waveforms of Class F and Class F−1 inverters with the efficient switching of Class E inverters. As a result, their switch voltage and current stresses are reduced, and their efficiency, output power and power-output capability can be higher than the Class E inverter. These improved features of Class EF inverters over Class E inverters can be beneficial in a wireless power transfer (WPT) via magnetic induction application. This paper demonstrates the application of a Class EF inverter operating at a 6.78MHz for a 25W WPT system. A sixth-order piecewise-linear state space model is presented to analyse the inverter and to derive values of its components to achieve optimum switching operation. Experimental results are provided to confirm validity of the state-space model and the design of the inverter and a DC-DC efficiency of 87% was achieved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.