Abstract

The LED (Light Emitting Diode) lighting technology has been becoming widespread rapidly due to having advantages such as extremely long lifetime, compact structure and very low energy consumption. In the literature, various LED driver topologies are proposed for controlling the LED's current and voltage. However, most of them require a large capacitor and inductor values due to low switching frequency operation. On the other hand, high capacitance with low volume can be achieved by using the electrolytic type capacitors which limits the lifetime and reliability of LED driver. By the help of high switching frequency, converter size can be reduced significantly. In addition, the capacitor size decreases and therefore electrolytic capacitors can be eliminated. In this study, isolated Class E resonant topology operating at 1 MHz is analysed and designed for 48 V/60 W offline LED driver. The design methodology is presented and verified by PSIM simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.