Abstract

BackgroundMotor imagery classification, an important branch of brain-computer interface (BCI), recognizes the intention of subjects to control external auxiliary equipment. Therefore, EEG-based motor imagery classification has received increasing attention in the fields of neuroscience. The common spatial pattern (CSP) algorithm has recently achieved great success in motor imagery classification. However, varying discriminative frequency bands and few-channel EEG limit the performance of CSP. New methodA class discrepancy-guided sub-band filter-based CSP (CDFCSP) algorithm is proposed to automatically recognize and augment the discriminative frequency bands for CSP algorithms. Specifically, a priori knowledge and templates obtained from the training set were applied as the design guidelines of the class discrepancy-guided sub-band filter (CDF). Second, a filter bank CSP was used to extract features from EEG traces filtered by the CDF. Finally, the CSP features of multiple frequency bands were leveraged to train linear support vector machine classifier and generate prediction. ResultsBCI competition IV datasets 2a and 2b, which include EEGs from 18 subjects, were used to validate the performance improvement provided by the CDF. Student’s t-tests of the CDFCSP versus the filter bank CSP without the CDF showed that the performance improvement was significant (i.e., p-values of 0.040 and 0.032 for the ratio and normalization mode CDFCSP, respectively). Comparison with existing method(s)The experiments show that the proposed CDFCSP improves the CSP algorithm and outperforms the other state-of-the-art algorithms evaluated in this paper. ConclusionsThe increased performance of the proposed CDFCSP algorithm can promote the application of BCI systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call