Abstract

The video-based commonsense captioning task aims to add multiple commonsense descriptions to video captions to understand video content better. This paper aims to consider the importance of cross-modal mapping. We propose a combined framework called Class-dependent and Cross-modal Memory Network considering SENtimental features (CCMN-SEN) for Video-based Captioning to enhance commonsense caption generation. Firstly, we develop class-dependent memory for recording the alignment between video features and text. It only allows cross-modal interactions and generation on cross-modal matrices that share the same labels. Then, to understand the sentiments conveyed in the videos and generate accurate captions, we add sentiment features to facilitate commonsense caption generation. Experiment results demonstrate that our proposed CCMN-SEN significantly outperforms the state-of-the-art methods. These results have practical significance for understanding video content better.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.