Abstract
Salient object detection (SOD) is a fundamental computer vision task. Recently, with the revival of deep neural networks, SOD has made great progresses. However, there still exist two thorny issues that cannot be well addressed by existing methods, indistinguishable regions and complex structures. To address these two issues, in this paper we propose a novel deep network for accurate SOD, named CLASS. First, in order to leverage the different advantages of low-level and high-level features, we propose a novel non-local cross-level attention (CLA), which can capture the long-range feature dependencies to enhance the distinction of complete salient object. Second, a novel cross-level supervision (CLS) is designed to learn complementary context for complex structures through pixel-level, region-level and object-level. Then the fine structures and boundaries of salient objects can be well restored. In experiments, with the proposed CLA and CLS, our CLASS net consistently outperforms 13 state-of-the-art methods on five datasets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.