Abstract

Low-rank models have been successfully applied to background modeling and achieved promising results on moving object detection. However, the assumption that moving objects are modelled as sparse outliers limits the performance of these models when the sizes of moving objects are relatively large. Meanwhile, inspired by the visual system of human brain which can cognitively perceive the physical size of the object with different sizes of retina imaging, we propose a novel approach, called Collaborative Low-Rank And Sparse Separation (CLASS), for moving object detection. Given the data matrix that accumulates sequential frames from the input video, CLASS detects the moving objects as sparse outliers against the low-rank structure background while pursuing global appearance consistency for both foreground and background. The sparse and the global appearance consistent constraints are complementary but simultaneously competing, and thus CLASS can detect the moving objects with different sizes effectively. The smoothness constraints of object motion are also introduced in CLASS for further improving the robustness to noises. Moreover, we utilize the edge-preserving filtering method to substantially speed up CLASS without much losing its accuracy. The extensive experiments on both public and newly created video sequences suggest that CLASS achieves superior performance and comparable efficiency against other state-of-the-art approaches.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call