Abstract
β-Lactamases of Ambler's Class A are the most commonly encountered mechanism of bacterial resistance to β-lactam antibiotics. In the face of selective pressure arising from use of either newer cephalosporins or β-lactam/β-lactamase inhibitor combinations, mutations arose among Class A β-lactamase genes, leading to resistance. Clavulanic acid, a naturally occurring clavam, and the penicillanic acid sulfones sulbactam and tazobactam are the inhibitors in clinical use. This review focuses on the mechanism of inhibition by these currently marketed β-lactamase inhibitors and on the mechanism by which specific amino acid substitutions might lead to resistance. The key amino acid positions important for inhibitor-resistance include Met69, Ser130, Arg244, Arg275, and Asn276. Ser130 is vital to the chemical mechanism of inhibition. Arg244 appears to be coordinated to Arg275 and Asp276 by hydrogen bonds. Arg244 is involved in positioning β-lactams, especially penicillins and β-lactamase inhibitors, via their carboxyl groups. Site-directed mutagenesis studies confirm the role of Arg244 and its coordinating partners in β-lactam turnover and in the reactions leading to enzyme inactivation. This mechanism is dependent on the donation of a proton via a water coordinated to Arg244 and Val216 to clavulanic acid to allow formation of a favorable leaving group. This proton donation is probably not required for formation of a favorable leaving group for the sulfone inhibitors sulbactam and tazobactam. Therefore, some amino acid substitutions have differing effects on inhibition by clavulanic acid compared with the penicillanic acid sulfones. Met69 may play a more structural role in β-lactam positioning within the oxyanion hole.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.