Abstract

Objectives: The objective of this study is to determine the prevalence of antibiotic resistance factors, including the production of extended-spectrum beta-lactamases (ESBLs) and the presence of class 1 integrons among Escherichia coli isolated from clinical specimens. Materials and Methods: Bacterial species identification was performed using a VITEK-2 system (VITEK2 GN-card; bioMérieux, France). Antimicrobial susceptibility testing was determined using the disk diffusion method according to the 2010 Clinical and Laboratory Standards Institute guidelines. Polymerase chain reaction (PCR) was used to detect integrons and amplify variable regions of the blaTEM, blaSHV and blaCTX-M genes. Gene cassettes were detected by deoxyribonucleic acid sequencing. Results: In this study, 58% (100/172) of clinical E. coli isolates were identified as ESBL producers. We found that 90% of the ESBL-producing E. coli isolates harbored the blaCTX-M gene, whereas only 59% and 32% possessed the blaTEM and blaSHV genes respectively. The presence of class 1 integrons was based on the detection of the integrase gene by PCR. A total of 69% of the ESBL-producing isolates were integron-positive. Resistance to 10 antibiotics, including quinolones, sulfonamides and β-lactam/enzyme inhibitors, was significantly higher in the class 1 integron-positive isolates (P < 0.05). The occurrence of class 1 integrons in blaTEM, blaSHV and blaCTX-M gene carriers was 72.9%, 84.4% and 68.9%, respectively. Class 1 integrons were detected in 61.5% of the isolates with only one ESBL genotype, but in 69.0% and 92.3% of the isolates with two or three different ESBL genotypes, respectively. Conclusions: Our findings indicate that clinical strains of bacteria with multiple ESBL genotypes may have greater opportunities to carry class 1 integrons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.