Abstract
En este artículo se compara el desempeño de una máquina de vectores de soporte de mínimos cuadrados multi-clase (multi-class Least Square Support Vector Machine mc-LSSVM) frente a un clasificador por regresión logística multi-clase, ante el problema del reconocimiento de dígitos numéricos (0-9) escritos a mano. Para desarrollar la comparación se usó un set de datos compuesto por 5000 imágenes de dígitos numéricos escritos a mano (500 imágenes por cada número del 0-9), cada imagen de 20 x 20 pixeles. La entrada a cada uno de los sistemas evaluados fueron vectores de dimensión 400, correspondientes a cada imagen (no se realizó extracción de características). Ambos clasificadores utilizan la estrategia Uno contra todos (OneVsAll) para habilitar la multi-clasificación y una función de validación cruzada aleatoria para el proceso de minimización de la función de costo. Las métricas de comparación fueron la precisión y el tiempo de entrenamiento bajo las mismas condiciones computacionales. Ambas técnicas evaluadas presentaron una precisión superior al 95 %, siendo LS-SVM ligeramente más precisa. Sin embargo, en el costo computacional sí se encontró una diferencia notoria: LS-SVM requiere un tiempo de entrenamiento 16,42 % inferior al requerido por el modelo basado en regresión logística bajos las mismas condiciones computacionales.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.