Abstract

The goal of this study was to investigate the phylogeny, invasion history and genetic structure of the global invader Megabalanus coccopoma. First, we created a Bayesian phylogeny using cytochrome oxidase I and 16S mitochondrial genes of samples we collected and sequences available on GenBank for all species in the genus Megabalanus. Second, we compared the genetic differences within and between native and invasive populations verified as M. coccopoma by constructing a haplotype network of the COI sequences and estimating gene diversity (h) and nucleotide diversity (π). Finally, we ran an analysis of molecular variance and calculated pairwise Φ ST to evaluate the similarity among populations. We identified several lineages that correspond to putatively different species of Megabalanus and uncovered nomenclature discrepancies among GenBank samples and undocumented lineages from our own collections. However, we found that the majority of samples were indeed M. coccopoma. Among populations of M. coccopoma, levels of within-population genetic diversity were not significantly different (p h = 0.131, p π = 0.129) between native (h = 0.970, π = 0.00708) and non-native populations (h = 0.950, π = 0.00605) and analysis of molecular variance analyses revealed that 98.34 % of the genetic variation was partitioned within populations with a significant global Φ ST = 0.017. Our results revealed that invasions in at least the southeastern United States and Brazil are composed of multiple lineages; however, we found that most of the global invasion occurred from a single lineage, M. coccopoma, and that no significant genetic differentiation exists between native and non-native populations of this species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call