Abstract

Nowadays, dealing with the growing chemical and energy demands is important without compromising the environment. So, this work studies photocatalytic glycerol conversion (as biomass derivativ feedstock) into value-added products using an eco-friendly synthesized catalyst. Graphene quantum dots (GQDs) were prepared from available/cheap precursors like glucose via the hydrothermal method and used as a support for TiO2. TiO2/GQDs were characterized via different analytical techniques, revealing very small particle sizes of ~ 3–6 nm with a large surface area of ~ 253 m2/g and a band gap of ~ 2.6 eV. The prepared photocatalyst shows good efficiency during photocatalytic glycerol conversion to dihydroxyacetone (DHA). Different reaction conditions were tested: reaction time, catalyst amount, presence of oxidant (H2O2), and biphasic media (aqueous/organic phases). Comparing a monophasic (H2O) photoreactor with a biphasic reactor containing 90% organic phase (ethyl acetate) and 10% aqueous phase (H2O and/or H2O2) indicates that the presence of H2O2 increases glycerol conversion and liquid selectivity to reach 57% and 91%, respectively after 120 min. However, it still suffers a low DHA/GA ratio (2.7). On the other hand, using a biphasic reactor in the presence of an H2O2 oxidant increases the DHA/GA ratio to ~ 6.6, which was not reached in previous research. The formation of H2O/H2O2 as micro-reactors dispersed in the ethyl acetate phase increased the average light intensity effect of the glycerol/photocatalyst system in the micro-reactors. Unlike previous work, this work presents a facile way to prepare eco-friendly/cheap (noble metal free) photocatalysts for glycerol conversion to ultrapure DHA using a biphasic photoreactor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call