Abstract

One of the major challenges for the bioremediation application of microbial nitrous oxide (N2O) reduction is its oxygen sensitivity. While a few strains were reported capable of reducing N2O under aerobic conditions, the N2O reduction kinetics of phylogenetically diverse N2O reducers are not well understood. Here, we analyzed and compared the kinetics of clade I and clade II N2O-reducing bacteria in the presence or absence of oxygen (O2) by using a whole-cell assay with N2O and O2 microsensors. Among the seven strains tested, N2O reduction of Stutzerimonas stutzeri TR2 and ZoBell was not inhibited by oxygen (i.e., oxygen tolerant). Paracoccus denitrificans, Azospirillum brasilense, and Gemmatimonas aurantiaca reduced N2O in the presence of O2 but slower than in the absence of O2 (i.e., oxygen sensitive). N2O reduction of Pseudomonas aeruginosa and Dechloromonas aromatica did not occur when O2 was present (i.e., oxygen intolerant). Amino acid sequences and predicted structures of NosZ were highly similar among these strains, whereas oxygen-tolerant N2O reducers had higher oxygen consumption rates. The results suggest that the mechanism of O2 tolerance is not directly related to NosZ structure but is rather related to the scavenging of O2 in the cells and/or accessory proteins encoded by the nos cluster. IMPORTANCE Some bacteria can reduce N2O in the presence of O2, whereas others cannot. It is unclear whether this trait of aerobic N2O reduction is related to the phylogeny and structure of N2O reductase. The understanding of aerobic N2O reduction is critical for guiding emission control, due to the common concurrence of N2O and O2 in natural and engineered systems. This study provided the N2O reduction kinetics of various bacteria under aerobic and anaerobic conditions and classified the bacteria into oxygen-tolerant, -sensitive, and -intolerant N2O reducers. Oxygen-tolerant N2O reducers rapidly consumed O2, which could help maintain the low O2 concentration in the cells and keep their N2O reductase active. These findings are important and useful when selecting N2O reducers for bioremediation applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.