Abstract
Apples are known for their nutrition and economic value. Accurate and rapid diagnosis of water status in apple seedlings on an individual rootstock basis is a prerequisite for precision water management. This study presents a rapid and non-destructive approach for estimating water content in apple seedlings at leaf levels. A PIKA L system collects hyperspectral images(400-1000nm) of apple leaves. To the author's knowledge, no prior work was conducted using the spectral-texture approach in plant water stress. Our research extracts spatial information, gray-level co-occurrence matrix (GLCM), from feature wavelength images of hypercubes. Machine learning methods are applied to these spatial feature matrixs to identify apple leaves under different water stresses. In addition, differences in spectral responses were analysed using machine learning techniques for sorting apple seedlings with varying water treatments (dry, normal, and overwatering). Also, we measure chlorophyll to determine the relationship between hyperspectral characteristics and physiological changes. The achievements of the research indicate that the fusion of texture and hyperspectral imaging coupled with machine learning techniques is promising and presents a powerful potential to determine the water stress in the leaves of apple seedlings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.