Abstract
We have previously reported that miR-9 promotes the homing, proliferation, and angiogenesis of endothelial progenitor cells (EPCs) by targeting transient receptor potential melastatin 7 via the AKT autophagy pathway. In this way, miR-9 promotes thrombolysis and recanalization following deep vein thrombosis (DVT). However, the influence of miR-9 on messenger RNA (mRNA) expression profiles of EPCs remains unclear. The current study comprises a comprehensive exploration of the mechanisms underlying the miR-9-regulated angiogenesis of EPCs and highlights potential treatment strategies for DVT. We performed RNA sequence analysis, which revealed that 4068 mRNAs were differentially expressed between EPCs overexpressing miR-9 and the negative control group, of which 1894 were upregulated and 2174 were downregulated. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses indicated that these mRNAs were mainly involved in regulating cell proliferation/migration processes/pathways and the autophagy pathway, both of which represent potential EPC-based treatment strategies for DVT. Reverse transcriptase quantitative polymerase chain reaction confirmed the changes in mRNA expression related to EPC angiogenesis, migration, and autophagy. We also demonstrate that miR-9 promotes EPC migration and angiogenesis by regulating FGF5 directly or indirectly. In summary, miR-9 enhances the expression of VEGFA, FGF5, FGF12, MMP2, MMP7, MMP10, MMP11, MMP24, and ATG7, which influences EPC migration, angiogenesis, and autophagy. We provide a comprehensive evaluation of the miR-9-regulated mRNA expression in EPCs and highlight potential targets for the development of new therapeutic interventions for DVT.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.