Abstract

Clamping force control is one of the key technologies in the algorithm design and implementation of electro-mechanical braking system, whose control effects directly affect the vehicle braking performance and safety performance. In order to improve the clamping force control performance of electro-mechanical braking (EMB) system, an EMB clamping force control method based on Variable universe adaptive fuzzy PID (VUF-PID) controller is proposed, and stretching factors are added to the fuzzy PID control. According to the operation of the controlled object, the fuzzy theory domain can be adjusted in real time to keep the system in the proper parameter value and improve the adaptive ability of the system. The response characteristics and effectiveness of clamping force under step braking condition, gear switching braking condition and sine braking condition are verified by simulation experiments using MATLAB/Simulink. The results show that the proposed VUF-PID control method has strong tracking characteristics and stability characteristics, and meet the braking requirements under different braking conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.