Abstract

In this article, the influence of hydrostatic stress and gravity on a clamped- free non homogeneous magneto electro elastic plate of polygonal cross sections is studied using linear theory of elasticity. The equations of motion based on two-dimensional theory of elasticity are applied under the plane strain assumption of prestressed and gravitated magneto electro elastic plate of polygonal cross-sections composed of non homogeneous isotropic material. The frequency equations are obtained by satisfying the boundary conditions along the irregular surface of the polygonal plate using Fourier expansion collocation method. The complex roots of the frequency equations are obtained by secant method. The numerical computations are carried out for triangular, square, pentagon and hexagon cross sectional plates. Graphical representation is given for the various physical variables via gravity and different edge boundaries and its characteristics are discussed. This result can be applied for optimum design of concrete plates with polygonal cross sections.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.