Abstract

Macrocyclic arenes have emerged as pivotal scaffolds in supramolecular chemistry. Despite their significant contributions to molecular recognition and diverse applications, challenges persist in the development of macrocyclic arene-based crystalline materials, particularly in achieving porosity and addressing limitations in adsorption efficiency resulting from the small cavity sizes of existing macrocyclic arenes. In this study, we present the design and synthesis of a novel macrocyclic arene, clamparene (CLP), featuring a rigid backbone, easy synthesis, and a sizable cavity. CLP self-assembles into one-dimensional sub-nanotubes that further organize into a three-dimensional porous framework in the solid state. The crystalline solid of CLP exhibits potential as a porous crystalline adsorbent for various benzene-based contaminants with rapid adsorption kinetics, large uptake amounts, and good recyclability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call