Abstract

Employing microelectrode techniques we have assessed the cellular electrophysiological properties of shark rectal gland (SRG) cells in primary culture. In the absence of secretagogues a 10-fold reduction in the Cl- concentration of the apical superfusate shark Ringer solution had little effect on either apical membrane electrical potential difference (Va) or fractional resistance (fRa), indicating little, if any, apical membrane Cl- conductance. Superfusing the basolateral surface with high-K+ shark Ringer solution (K+ increased 10-fold) depolarized the basolateral membrane electrical potential difference (Vb) by 43 mV, indicating that this barrier is largely K+ conductive. In addition, basolateral Ba2+ (5 mM) depolarized Vb by 12 mV and reduced fRa from 0.92 to 0.58, results consistent with a K(+)-conductive basolateral membrane in unstimulated SRG cells. Basolateral forskolin (10(-6) M) depolarized Va by 25 mV and caused a dramatic reduction in fRa from 0.97 to approximately 0.10. Under these conditions, a 10-fold decrease in apical superfusate Cl- concentration depolarized Va by 37 mV, revealing an adenosine 3',5'-cyclic monophosphate-induced apical membrane Cl- conductance. The time course of the forskolin-induced changes in Va and Vb suggests that the basolateral membrane K+ conductance increased and maintained the driving force for apical Cl- exit, as in other Cl(-)-secreting epithelia. These electrophysiological properties compare favorably with those of the perfused SRG tubule and indicate that SRG primary cultures are a suitable model for Cl(-)-secreting epithelia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.