Abstract

Cks1 is an activator of the SCF(Skp2) ubiquitin ligase complex that targets the cell cycle inhibitor p27(Kip1) for degradation. The loss of Cks1 results in p27(Kip1) accumulation and decreased proliferation and inhibits tumorigenesis. We identify here a function of Cks1 in mammalian cell cycle regulation that is independent of p27(Kip1). Specifically, Cks1(-/-); p27(Kip1-/-) mouse embryonic fibroblasts retain defects in the G(1)-S phase transition that are coupled with decreased Cdk2-associated kinase activity and defects in proliferation that are associated with Cks1 loss. Furthermore, concomitant loss of Cks1 does not rescue the tumor suppressor function of p27(Kip1) that is manifest in various organs of p27(Kip1-/-) mice. In contrast, defects in mitotic entry and premature senescence manifest in Cks1(-/-) cells are p27(Kip1) dependent. Collectively, these findings establish p27(Kip1)-independent functions of Cks1 in regulating the G(1)-S transition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.