Abstract
Nonalcoholic fatty liver disease (NAFLD), which is characterized by aberrant accumulation of intrahepatic triglycerides and lipid droplets (LDs) in the liver cells, is becoming increasingly prevalent at an alarming rate worldwide. LDs can be consumed by either hydrolysis or autophagy, which is shown to be of importance in the regulation of hepatic lipid metabolism. We have shown that deficiency of pleckstrin homology domain-containing casein kinase 2 interacting protein-1 (CKIP-1), a scaffold protein that interacts with various proteins in multiple signal pathways, in mice aggravates high-fat diet induced fatty liver. However, its underlying mechanisms remain largely unknown. In this study, we found that the mRNA and protein levels of CKIP-1 decreased dramatically in steatotic HepG2 cells induced by oleic acid (OA) treatment. Coincidently, hepatic autophagy was also dynamically regulated in steatotic HepG2 cells. In addition, overexpression of CKIP-1 activated autophagy by suppression of Akt/mTOR signaling, which in turn reduced lipid accumulation. Moreover, these phenomena were reversed in CKIP-1-shRNA transfected steatotic hepatocytes. To further evaluate the potential role of CKIP-1 in autophagy, we determined the level of autophagy related proteins in CKIP-1 knockout mice. These results supported our findings in vitro. In summary, we found CKIP-1 to be a positive regulator of hepatic autophagy and a promising therapeutic target for treatment of NAFLD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.