Abstract

The Kidney Failure Risk Equation (KFRE) and Kaiser Permanente Northwest (KPNW) models have been proposed to predict progression to ESKD among adults with CKD within 2 and 5 years. We evaluated the utility of these equations to predict the 1-year risk of ESKD in a contemporary, ethnically diverse CKD population. We conducted a retrospective cohort study of adult members of Kaiser Permanente Northern California (KPNC) with CKD Stages 3-5 from January 2008-September 2015. We ascertained the onset of ESKD through September 2016, and calculated stage-specific estimates of model discrimination and calibration for the KFRE and KPNW equations. We identified 108,091 eligible adults with CKD (98,757 CKD Stage 3; 8,384 CKD Stage 4; and 950 CKD Stage 5 not yet receiving kidney replacement therapy), with mean age of 75 years, 55% women, and 37% being non-white. The overall 1-year risk of ESKD was 0.8% (95%CI: 0.8-0.9%). The KFRE displayed only moderate discrimination for CKD 3 and 5 (c = 0.76) but excellent discrimination for CKD 4 (c = 0.86), with good calibration for CKD 3-4 patients but suboptimal calibration for CKD 5. Calibration by CKD stage was similar to KFRE for the KPNW equation but displayed worse calibration across CKD stages for 1-year ESKD prediction. In a large, ethnically diverse, community-based CKD 3-5 population, both the KFRE and KPNW equation were suboptimal in accurately predicting the 1-year risk of ESKD within CKD stage 3 and 5, but more accurate for stage 4. Our findings suggest these equations can be used in1-year prediction for CKD 4 patients, but also highlight the need for more personalized, stage-specific equations that predicted various short- and long-term adverse outcomes to better inform overall decision-making.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call