Abstract

The c-Jun N-terminal kinases (JNK) belong to the subfamily of mitogen-activated protein kinases (MAPK). JNK is an important signaling enzyme that is involved in many facets of cellular regulation including gene expression, cell proliferation and programmed cell death. Activation of JNK isoforms (JNK1, 2, and 3) is regarded as a molecular switch in stress signal transduction. The activation of JNK pathways is also critical for pathological death associated with neurodegenerative diseases. Considering that a variety of stressors activate JNK, it is surprising that the role of hippocampal JNK in memory and synaptic plasticity has not yet been systematically investigated. Here we summarize the emerging evidence for the functions of hippocampal JNK in memory and synaptic plasticity, including our recent demon-stration that JNK isoforms play critical roles in regulation of contextual fear conditioning under stressful and baseline conditions. We postulate that sustained activation of the hippocampal JNK2 and JNK3 pathways is involved in the initial stress response that ultimately leads to deficits in memory and long-term potentiation, whereas transient JNK1 activation regulates baseline contextual fear conditioning. Results obtained within the framework of our recent findings will be used for future work, which will differentiate mechanisms underlying beneficial short-term JNK action from prolonged JNK activation that may lead to memory deficits and neurodegeneration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.