Abstract

BackgroundExtraintestinal pathogenic E. coli (ExPEC) is a common gram-negative organism causing various infections, including urinary tract infections (UTIs), bacteremia, and neonatal meningitis. The cjrABC-senB gene cluster of E. coli contributes to ExPEC virulence in the mouse model of UTIs. Consistently, the distribution of cjrABC-senB is epidemiologically associated with human UTIs caused by E. coli. cjrABC-senB, which has previously been proposed to encode an iron uptake system, may facilitate ExPEC survival in the iron availability-restricted urinary tract. Given that the bloodstream is also an iron limited environment to invading bacteria, the pathogenic role of cjrABC-senB in ExPEC bacteremia, however, remains to be investigated.MethodsThe ability of ExPEC RS218 strains with and without cjrABC-senB to survive in the mouse bloodstream and human serum was evaluated. Subsequently, the role of this gene cluster in the ExPEC interaction with the complement system was evaluated. Finally, the distribution of cjrABC-senB in human clinical E. coli isolates was determined by PCR. The frequency of cjrABC-senB in bacteremia isolates that were not associated with UTIs (non-UTI bacteremia isolates) was compared with that in UTI-associated isolates and fecal isolates.ResultsExpression of cjrABC-senB attenuated the survival of RS218 in the mouse bloodstream and human serum. The cjrABC-senB-harboring strains triggered enhanced classical- and alternative-complement pathway activation and became more vulnerable to complement-mediated killing in serum. cjrA was identified as the major gene responsible for the attenuated serum survival. Expressing cjrABC-senB and cjrA increased bacterial susceptibility to detergent and induced periplasmic protein leakage, suggesting that the expression of these genes compromises the integrity of the outer membrane of ExPEC. In addition, the frequency of cjrABC-senB in non-UTI bacteremia isolates was significantly lower than that in UTI-associated isolates, while the frequencies in non-UTI bacteremia isolates and fecal isolates showed no significant difference. Consistently, this epidemiological investigation suggests that cjrABC-senB does not contribute to E. coli bacteremia in humans.ConclusionThe contribution of cjrABC-senB to the pathogenesis of ExPEC is niche dependent and contradictory because the genes facilitate ExPEC UTIs but hinder bacteremia. The contradictory niche-dependent characteristic may benefit the development of novel strategies against E. coli-caused infections.

Highlights

  • Extraintestinal pathogenic E. coli (ExPEC) is a common gram-negative organism causing various infections, including urinary tract infections (UTIs), bacteremia, and neonatal meningitis

  • Given that the complement system plays an important role in resisting invading bacteria in the serum and that the function of this system is heat labile, the results suggest that the complement system may be responsible for the differential killing of the ExPEC strains with and without the CjrABC-senB gene cluster

  • In combination with the previous finding that cjrABC-senB is not associated with biliary tract infections (BTIs)-associated bacteremia, these findings suggest that cjrABC-senB does not contribute to non-UTI-associated bacteremia in humans

Read more

Summary

Introduction

Extraintestinal pathogenic E. coli (ExPEC) is a common gram-negative organism causing various infections, including urinary tract infections (UTIs), bacteremia, and neonatal meningitis. CjrABC-senB, which has previously been proposed to encode an iron uptake system, may facilitate ExPEC survival in the iron availability-restricted urinary tract. Extraintestinal pathogenic E. coli (ExPEC) is one of the major causes of extraintestinal infections, such as urinary tract infections (UTIs), bacteremia, and neonatal meningitis [1]. The E. coli cjrABC-senB gene cluster, which contains the genes cjrA, cjrB, cjrC, and senB, is located on virulence plasmids of many ExPEC strains and has been shown to contribute to the uropathogenesis of ExPEC [4,5,6]. As bacterial survival in the bloodstream is a critical step for ExPEC to cause lethal systemic infections, it is of interest to elucidate the role of cjrABC-senB in ExPEC survival in the bloodstream, where iron availability is restricted for invading pathogens [10, 11]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call