Abstract

Concerns around urban air quality have been increasing worldwide due to large-scale urbanization. A large volume of work has been focused on the chemical pollutants in the air and their impacts on human health. However, the profile of airborne microbial contaminants, especially antibiotic resistance genes (ARGs), is largely understudied. Here, high-throughput quantitative PCR (HT-qPCR) was employed to explore the temporal and spatial distribution of airborne ARGs from 11 sites with various functional zones and different urbanization levels within Xiamen, China. A total of 104 unique ARGs and 23 mobile genetic elements (MGEs) were detected across all samples. Temporal shift was observed in the distribution of ARG profiles, with significantly higher relative abundance of ARGs detected in summer than that in spring. Temperature is the key predictor of the total relative abundance of ARGs and MGEs in summer, while PM2.5 and PM10 were the two most important factors affecting the abundance in spring. Our findings suggest that urban aerosols accommodate rich and dynamic ARGs and MGEs, and emphasize the role of temperature, air quality and anthropogenic activities in shaping the profile of ARGs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.