Abstract
The majority of people in the world directly or indirectly depend on agriculture. Plant diseases are a significant threat to agricultural production and food security. Due to its high nutritional value, citrus fruit is one of the most abundant fruits in the world. However, different diseases are responsible for degraded citrus production as well as financial losses to the farmers. Traditionally, visual observation by experts has been attended to diagnose plant diseases. Usually, plant leaf disease recognition methods mainly rely on expert experiences to manually extract the colour, composition, and other features of diseased leaf images. Black spot, greening, canker, and melanoses are four common citrus leaf diseases. Rapid and accurate diagnosis of these diseases is a demand of time. Deep learning is a promising solution to these problems. There are different types of deep learning architecture like ImageNet, GoogleNet, VGG16, ResNet50, and InceptionV3, which show promising results in different object detection. Though most of these benchmark models give almost similar accuracy. However, this paper uses two deep learning models to find the better ones for the detection of citrus leaf disease detection. Hence, InceptionV3 outperforms VGG16 in terms of accuracy.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Bulletin of Electrical Engineering and Informatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.