Abstract

Diabetic cataract causes severe vision loss. This study evaluated the effects of hesperidin-standardized Citrus hystrix leaf flavonoids-rich extract (CLE) on diabetic-cataract development. Streptozotocin-induced diabetic rats were orally given 150 and 300mg CLE/kg body-weight. These were compared with non-treated diabetic or healthy rats as controls, over 8weeks. The CLE gradually attenuated fasting blood glucose (FBG), biomarkers for inflammation (Tumor necrosis factor alpha TNF-α; prostaglandin E2 PGE2); vascular permeability, (Vascular endothelial growth factor VEGF); and oxidative stress, (malondialdehyde MDA). The diabetic cataract was significantly mitigated by the 150mg CLE/kg dose. Good correlations were found between cataract incidence with FBG (r2 =0.90), serum PGE2 (r2 =0.91), MDA (r2 =0.99), VEGF (r2 =0.71), but not with TNF-α levels (r2 =0.49) suggesting the serum FBG, PGE2, MDA, and possibly the VEGF levels may help to predict the cataract risks. The CLE mitigated cataract probably by attenuating hyperglycaemia, inflammation, lens fluid influx, vascular leakage, lens osmotic-imbalance, and fibers over-hydration. PRACTICAL APPLICATIONS: The study shows the flavonoids-rich Citrus hystrix leaf consumption, effectively attenuated diabetes (fasting blood glucose) and mitigated diabetic cataract. It help reduce diabetes-related hyperglycaemia, oxidative stress, inflammation, and vascular leakage. The evidences were the CLE consumptions reduced the serum biomarkers tumor necrosis factor-alpha TNF-α; prostaglandin E2 PGE2, vascular endothelial growth factor (VEGF), and malondialdehyde (MDA). The C. hystrix leaf contains hesperidin, apiin, diosmin, saponarin, apigetrin, rutin and xanthotoxol, and other flavonoid glucosides. The study also showed good correlations between cataract incidence with fasting blood glucose FBG (r2 =0.90), serum PGE2 (r2 =0.91), and MDA (r2 =0.99), and less closely with VEGF (r2 =0.71) suggesting these serum biomarkers may help predict cataract risks. The CLE indicated cataract mitigation properties probably by attenuating FBG, inflammation, lens fluid influx, lens osmotic-imbalance, and fibers over-hydration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call