Abstract

ABSTRACT Phylogenetic analysis revealed that isolates of Alternaria alternata causing black rot of citrus were associated with six well-supported evolutionary lineages. Isolates recovered from brown spot lesions on Minneola tangelo, leaf spot lesions on rough lemon, and healthy citrus tissue and noncitrus hosts were related closely to isolates from black-rotted fruit. Phylogenies estimated independently from DNA sequence data from an endopolygalacturonase gene (endoPG) and two anonymous regions of the genome (OPA1-3 and OPA2-1) had similar topologies, and phylogenetic analysis was performed on the combined data set. In the combined phylogeny, isolates from diverse ecological niches on citrus and noncitrus hosts were distributed in eight clades. Isolates from all lineages, regardless of ecological or host association, caused black rot in fruit inoculation assays, demonstrating that small-spored Alternaria isolates associated with different ecological niches on citrus and other plant hosts are potential black rot pathogens. These data also indicated that the fungi associated with black-rotted fruit do not form a natural evolutionary group distinct from other Alternaria pathogens and saprophytes associated with citrus. The use of the name A. citri to describe fungi associated with citrus black rot is not justified and it is proposed that citrus black rot fungi be referred to as A. alternata.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call